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Abstract. The temperature dependence of the diffusion coefficient of particles is studied on
lattices with disorder. A model is investigated with both trap and barrier disorder that was
introduced earlier by Y Limoge and J L Bocquet (1990Phys. Rev. Lett.65 60) to explain
an Arrhenian temperature dependence of the diffusion coefficient in amorphous substances.
We have used a generalized effective-medium approximation (EMA) by introducing weighted
transition rates as inferred from an exact expression for the diffusion coefficient in one-
dimensional disordered chains. Monte Carlo simulations were made to check the validity of
the approximations. Approximate Arrhenian behaviour can be achieved in finite temperature
intervals in three- and higher-dimensional lattices by adjusting the relative strengths of the
barrier and trap disorder. Exact Arrhenian behaviour of the diffusion coefficient can only be
obtained in infinite dimensions.

1. Introduction

Many amorphous substances exhibit linear behaviour in an Arrhenius plot of the diffusion
coefficientD, or the mobilityB of particles, where ln(D), or ln(B), is presented as a function
of the inverse temperatureβ = 1/T kB . The observation of an Arrhenian temperature
dependence is not easily understandable from the theory of diffusion in disordered crystals.
The commonly used models of diffusion of particles in lattices with disordered transition
rates predict different behaviour: the random-trap model predicts generally convex (down-
ward) curvature of ln(D) versusβ, independent of the lattice dimensiond, while the random-
barrier model gives concave (upward) curvature for three- and higher-dimensional lattices.
Limoge and Bocquet [1] suggested that the apparent Arrhenius behaviour of ln(D) versusβ
might be due to a compensation of the effects of random barriers and random traps. The aim
of this paper is the examination of this appealing proposition by analytical and numerical
methods.

The analytical arguments given by Limoge and Bocquet [1] in support of a compensation
of the effects of random barriers and of random traps are only partially satisfactory. They
employed continuous-time random-walk theory and used a decoupling approximation when
performing the disorder averaging. This procedure gives correct results for the random-
trap model. For the random-barrier model, however, the ensuing results are not correct,
as a consequence of the neglect of important backward correlations in the transitions of
the particles. The failure of the decoupling approximation for the random-barrier model in
comparison to the Monte Carlo results was already discussed in [1].

Recently a new exact result for the diffusion coefficient of particles in one-dimensional
disordered chains has been found [2–4]. The expression contains transition rates that are
weighted by the equilibrium occupancies of the sites; this is relevant for random-site
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energies, i.e., random traps. The insight obtained from this result can serve as a basis
for approximate treatments of models with site and barrier disorder in higher dimensions,
as will be shown here in the form of an effective-medium approximation (EMA). Very
recently Limoge and Bocquet [5] tried to take the inherent backward correlations of the
random-barrier model into account. The differences between their and our results will be
discussed below.

In the remainder of this introduction we present qualitative arguments for the different
curvatures in the simple models. The downward curvature of ln(D) versusβ for the random-
trap model is easily understood: the deepest trap sites with the lowest energies dominate the
behaviour at the lowest temperatures. The convex curvature can be deduced formally from
the exact expression for the disorder-averaged diffusion coefficientD (see below), which is
valid for all dimensionsd. The argument for the random-barrier model is more complicated.
At the lowest temperatures, where the ratio of the width of the barrier energy distribution
and the thermal energy is large, the diffusion coefficient is determined by the highest barrier
along a critical path of bond percolation [6]. The path may be constructed by selecting
successively bonds with the lowest barriers possible until the ‘infinite’ cluster in the lattice
appears. If the temperature is raised, additional paths contribute to the diffusivity. These
paths comprise also higher barriers, and hence the apparent activation energy is increased.

In the following section we describe the derivation of the exact result forD in disordered
linear chains from an expression for the mean first-passage time. In section 3 we give an
analytical treatment of the combination of independent random barriers and random traps.
Section 4 contains the EMA for the combined model ford > 3. In section 5 we present
our conclusions from the results.

2. The exact expression for the diffusion coefficient ford = 1

Recently an exact expression for the asymptotic diffusion coefficient of single particles on
linear chains with disordered transition rates has been derived [2–4]. In [2] a first-passage-
time method was used while in [3, 4] the mobility of particles on chains with periodic
boundary conditions was derived from the linear response to a driving force. We follow
reference [2] for the derivation. The basis is an exact expression for the mean first-passage
time of a particle from site 0 to siteN on a segment of a disordered chain [7]. Site 0 is
regarded as reflecting, while siteN is an absorbing site. The expression reads

t̄0N =
N−1∑
k=0

1

0k,k+1
+

N−2∑
k=0

1

0k,k+1

N−1∑
i=k+1

i∏
j=k+1

0j,j−1

0j,j+1
. (1)

Here0i,i+1 is the transition rate from sitei to site i + 1, the transitions being restricted to
nearest neighbours. Note that (1) givest̄0N for a particular (quenched) realization of the
disordered segment.

We now invoke the condition of detailed balance between two neighbour sites,

ρi0ij = ρj0ji . (2)

The thermal occupation factorsρi are defined by

ρi = exp(−βEi)

{exp(−βEi)} (3)
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whereEi is the energy of sitei, counted negative from a common origin. The curly brackets
in (3) designate the average over the disordered site energies, for finite segments:

{exp(−βEi)} = 1

N

N∑
i=1

exp(−βEi). (4)

The occupation factors are proportional to the thermal equilibrium occupation probabilities
of the sites; due to the normalization used they can be larger or smaller than one.

The condition of detailed balance holds in equilibrium, and the occupation factorsρi

exist for finite segments when all nearest-neighbour transition rates0ij 6= 0. We have to
require that unique occupation factors also exist in the limitN → ∞. This requirement
excludes certain interesting models, for instance the Sinai model [8], from the further
derivations. However, it is fulfilled for the models considered in the next section.

When the condition of detailed balance (2) is introduced into expression (1) a
considerable simplification is achieved:

t̄0N =
N−1∑
k=0

1

0k,k+1
+

N−2∑
k=0

ρk

N−1∑
i=k+1

1

ρi0i,i+1
. (5)

Taking the disorder average of the equation, we find as the leading term in the limit of long
segments,N � 1,{

t̄0N

} = 1

2
N2

{
1

ρi0ij

}
. (6)

This equation can be interpreted as the inverted relation between time and mean squared
displacements of random walks on disordered lattices,t = (2D)−1{X2}. We hence deduce
the following asymptotic diffusion coefficient from (6):

D =
{

1

ρi0ij

}−1

. (7)

Under the assumption of the existence of unique occupation factors one can also derive, for
largeN , using again detailed balance

{t̄2
0N } − {t̄0N }2 ∝ N3. (8)

Since{t̄0N }2 ∼ N4, the relative dispersion of the disorder average of the mean first-passage
times vanishes asN−1/2 for long segments. One can say that{t̄0N } becomes ‘sharp’ in the
asymptotic limit of largeN . In this way the use of the inverted relation (6) to deduce the
diffusion coefficient can be justified.

The physical significance of the result (7) is that the diffusion coefficient follows from
thermally weighted transition rates. A numerical verification of (7) for the Miller–Abrahams
model [9] for d = 1 has been given in reference [10].

3. Combination of random barriers and random traps: analytical results

3.1. The model and exact result ford = 1

We now investigate a model for hopping diffusion of particles in lattices with combinations
of random barriers and random traps. The random-barrier (RB) model is defined with
symmetric transition rates0ij between neighbour sites,0ij = 0ji . An Arrhenius form for
the transition rates is assumed:

0ij = 00 exp(−βEij ). (9)
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The energetic barrierEij between sitesi andj is a random variable and it is taken from a
common distributionνB(E). To avoid problems with negative barriers we restrict the range
of the barrier energies toE > 0. The random-trap (RT) model is defined by rates0i that
originate from the sitesi and are independent of the final sites. Also here the Arrhenius
form is assumed:

0i = 00 exp(βEi) (10)

whereEi is the energy of sitei. The site energies will be counted negative and the range
be restricted toE 6 0. Again the individual site energies are selected from a common
distributionνT (E).

Figure 1. A schematic representation of the combination of random barriers and random traps.

We introduce a combination of the RT and RB models by specifying the transition rates
between two neighbour sites as

0ij = 00 exp[−β(Eij − Ei)]. (11)

The energyEij with two site indices refers to the barrieri → j while the energyEi with one
index refers to the sitei. (To distinguish between barrier and site energies, we sometimes
keep dummy site indices.) A pictorial representation of the model is given in figure 1. Note
that the model is different from the Miller–Abrahams model [9] where the site energy of
the terminal sitej appears explicitly.

The occupation factorsρi are required in the weighted transition rates that appear in
(7); they are given in (3). The weighted transition rates are then

ρi0ij = 00 exp(−βEij )

{exp(−βEi)} . (12)

The numerator contains only barrier energies while the site energies only appear in the
denominator, which can be evaluated directly. An immediate consequence of (12) is the
expression for the diffusion coefficient of the RT model:

DRT = 00{exp(−βEi)}−1 (13)

when barrier disorder is absent. Equation (13) follows from (7) ford = 1; it is valid
for all dimensions [11]. Another consequence of equation (13) is that the derivative of
ln(DRT ) with respect to the inverse temperatureβ is given by the mean thermal energy.
Since the mean thermal energy can only decrease with decreasing temperature, the slope of
ln[DRT (β)] is decreasing with increasingβ.

An exact result is obtained from (7) for the diffusion coefficient of the combined RB
and RT model ford = 1:

Dcomb = 00{exp(−βEi)}−1{exp(βEij )}−1. (14)
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Equation (14) can be cast into another form:

Dcomb = 1

00
DRT DRB. (15)

The diffusion coefficientDRT exhibits generally downward curvature in an Arrhenius plot.
Since the average that determines the diffusion coefficientDRB for d = 1 has the same
form as the one determiningDRT , downward curvature is also present in the Arrhenius plot
of this coefficient. Also the diffusion coefficient of the combined model has then downward
curvature ford = 1. In other words, a compensation of the effects of random barriers and
random traps is never possible ford = 1.

3.2. Results for higher dimensions

The diffusion coefficient of particles in the random-barrier model in simple square lattices
is exactly known for symmetric barrier energy distributionsνB(E) [12]. For symmetric
energy distributions the diffusion coefficient is

DRB = 00 exp(−βĒ) (16)

whereĒ is the medium value of the energy distribution. HenceDRB does not show curvature
in an Arrhenius plot. Consequently, the diffusion coefficient of the combined model will
exhibit downward curvature in simple square lattices.

Approximations are necessary to derive the asymptotic diffusion coefficients in higher-
dimensional disordered lattices. It is very plausible that the weighted transition rates (12)
should also be used in approximate treatments. The site energy and barrier disorder can be
treated independently when they are uncorrelated. Under this assumption, the numerator
of equation (12) only contains uncorrelated barrier energies. The EMA gives reasonably
accurate results for the RB model when the disorder is not very strong. Hence we will use
this approximation to deal with the barrier disorder ford > 1. In the EMA, an effective
transition rate0eff is determined from a self-consistency condition [12, 13]:{

0eff − 0

[(z − 2)/2]0eff + 0

}
= 0. (17)

The transition rate0 is a random variable; here it is taken according to equation (12). The
rate 0 is symmetric as a consequence of detailed balance; this symmetry is required for
the application of equation (17). The curly brackets indicate the disorder average which
extends over the barrier disorder. The diffusion coefficient is identical to0eff and the lattice
constant in the hypercubic lattices that we study is set to unity.

Since the exact result (13) forDRT is contained as a factor in the weighted transition
rates, we have in the EMA

DEMA
comb = 1

00
DRT DEMA

RB . (18)

The EMA becomes exact in the limit of coordination numberz → ∞, i.e., in infinite-
dimensional disordered lattices. We obtain in this limit

Dcomb = 00{exp(−βEi)}−1{exp(−βEij )}. (19)

The second average is proportional to the average over the rates corresponding to the
random barriers. For the RB model and ford → ∞ we haveDRB = {0RB}, and hence
the product form ofDcomb (15) is also valid for infinite dimensions. We conjecture that
(15) is generally valid if the site and barrier energies are uncorrelated. Very recently
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Limoge and Bocquet incorporated the backward correlations of the RB model and derived a
self-consistency condition for the effective transition rate. However, their self-consistency
condition is different from the standard form (17) of the EMA and reproduces neither the
exact one-dimensional result (section 3.1) nor the exact two-dimensional result (16).

3.3. The possibility of complete compensation

In this subsection we study the possibility for a complete compensation of the curvatures
resulting from the RT and RB models. For this purpose we consider first the case of
infinite dimensions,d → ∞. To obtain complete compensation of the curvatures, a special
relationship between the site and barrier energy distributions must exist. To determine this
relation, we require that the following equation represents simple Arrhenian behaviour of
the diffusion coefficient:

00{exp(−βEi)}−1{exp(−βEij )} = 00 exp(−βEcomb) (20)

with a temperature-independent activation energyEcomb > 0.
Let us assume thatνT (E) is restricted to the energy interval [−Ec, 0] with Ec a positive

quantity. If we identifyEc with Ecomb we can show by simple manipulations of the left-hand
side of equation (20) that it is satisfied when

νB(E) = νT (E − Ecomb). (21)

The barrier distribution is then restricted to the interval [0, Ecomb] and it is simply the
trap distribution shifted byEcomb. The argument implies that complete compensation, for
d → ∞, is only possible for energy distributions that are restricted to a finite interval. Of
particular interest are distributions that are symmetric about the midpoint of the interval. Of
course it is not necessary that the distributions are not equal to zero throughout the whole
interval.

For finite dimensions 1< d < ∞ the diffusion coefficientDRB has to be determined
using approximations, for instance by the EMA. It is a complicated functional of the energy
distribution νB(E) and no general result can be obtained. It seems very implausible that
complete compensation can be achieved in general. However, it appears always possible,
for dimensionsd > 3, to choose the energy distributionsνT (E) andνB(E) in such a way
that an approximate Arrhenian behaviour is achieved in a restricted temperature interval.

4. Comparison of EMA results and numerical simulations

In this section we present EMA results for the combined model ford = 3 and 5 for different
forms of the disorder and various temperatures. The results are compared with Monte Carlo
simulations of the diffusion coefficient by measuring the mean square displacement{r 2(t)}
where the asymptotic diffusion coefficientD is given by{

r 2(t)
} → 2dDt. (22)

Actually we present the whole proportionality factor 2dD as the diffusion coefficient in
the figures to make results in different dimensions comparable. Compensatory effects of
random barriers and random traps are now discussed.

We first calculateDEMA
comb for uniform distributions of energies (for the RB model see

[12]):

DEMA
comb = 00

d − 1
exp

(
−1

2
βσB

)[
sinh

(
d − 1

2d
βσB

)/
sinh

(
1

2d
βσB

)]
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Figure 2. Diffusion coefficients in the RT, RB, and combined model, for uniform distributions
of the energies. The parameter00 is set to unity. The different symbols represent simulation
results for the RB (+), RT (♦), and the combined model (�) with σT = 3.0, 3.2 for d = 3
(full curves) andd = 5 (dashed curves) respectively andσB = 4.0 in both cases. The curves
represent the EMA result for 2dDcomb (23).

× βσT

exp(βσT ) − 1
d > 2 (23)

where

ν(E) =


1/σT −σT 6 E 6 0 (RT)

1/σB 0 6 E 6 σB (RB)

0 otherwise.

By comparison with the numerical simulations we find that using

σT ≈ d − 1

d
σB (24)

approximate Arrhenian behaviour is reached. In figure 2 results of Monte Carlo simulations
are shown together with the EMA results (23) with parameters chosen according to (24). The
upward curvature for the RB model is stronger ford = 5 than ford = 3 although the width
of the distribution is the same. The compensation works in the case of a stronger curvature
for the RB and RT models because for larger coordination numbers compensation becomes
generally easier. The effect of the coordination number on the possibility of compensation
of barrier and site energy disorder was already noted in [1].

We consider as a second energy distribution the Gaussian distribution

ν(E) = 1

0.95
√

2πσ
exp

(
− (E − Ē)2

2σ 2

)
with E

{
6 0 σ = σT for RT
> 0 σ = σB for RB.

(25)

We have to cut off the tails of one side of the distributions to get only negative (positive)
energy values. We decided to cut off 5% of the distributions. Therefore we takeĒ according
to

Ē = −σ erf−1(0.95) (26)

where erf( ) is the error function. For this distribution, the self-consistency condition (17)
has to be solved numerically. Results are shown in figure 3. For this example the two
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Figure 3. Diffusion coefficients in the RT, RB, and combined model, for the Gaussian
distributions of energies. The parameter00 is set to unity. The different symbols represent
simulation results for the RB (+), RT (♦), and the combined model (�) with σB = 4.0,
Ē ≈ 6.58 for d = 3 (full curves), σB ≈ 1.74, Ē ≈ 2.86 for d = 5 (dashed curves), and
σT = 1.2, Ē ≈ −1.97 in both cases. The curves represent the EMA result for 2dDcomb.

curves for the RT model lie on top of each other because we took the same width ford = 3
and 5 and then determined the width of the barrier distribution to get compensation in the
combined model. Again the upward curvature of the RB model is stronger ford = 5 than for
d = 3 although we took a smaller width of the barrier distribution for the higher dimension.
Nonetheless compensation of the curvature is still possible and the numerical procedure to
find the correct parameters of the distribution for the best possible compensation is even
more stable for the higher dimension. Though the curves of the combined model in figure
3 look linear, the numerical results show that no perfect compensation is possible.

5. Conclusion

Our theory of the diffusion coefficients of models with combined site energy and barrier
disorder was based on weighted transition rates where the thermal site occupancies enter
explicitly. Due to the exponential form of the assumed Arrhenius law for the individual
transition rates, the contributions from the site energies and the barrier energies factorize.
If the site energy and barrier disorder are uncorrelated, the resulting diffusion coefficient
factorizes into the random-trap and random-barrier contributions. A consequence is that
compensation of the effects of random site energies and random barriers on the curvature
in an Arrhenius plot ofDcomb versusβ is not possible ford = 1 andd = 2. The simple
square lattice represents a boundary case.

Partial compensation is possible in a finite temperature interval for three and higher
dimensions, if the strength of the disordered site and barrier energies is adjusted properly
(stronger disorder in the barriers than in the site energies for finite dimensionsd > 3).

In this context we should mention that our conclusions refer to the hypercubic lattices
(square, simple cubic, etc). The relevant parameter for the temperature dependence of the
diffusion coefficient in the RB model is the coordination numberz. Lattices withz 6= 2d

were investigated by Limoge and Bocquet [5].
We conclude that partial compensation of the effects of random barriers and random site
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energies is possible ford = 3, in a finite temperature interval, if two premises are fulfilled:

(i) the assumption of independent site energies and barrier heights; and
(ii) the properly adjusted strength of the disorder.

Point (i) may be somewhat alleviated by including short-range correlations, but point
(ii) seems to be generally necessary. We leave the question open of whether the points (i)
and (ii) are reasonable descriptions of real amorphous substances.

Instead we point to one serious deficiency of the present theories of diffusion in
disordered systems. The present theories are based on regular lattices with the disorder
put into the transition rates. Real materials have topologically disordered structures. There
exist a range of coordination numbers of the equilibrium sites, and the jump distances vary
considerably. The treatment of these effects remains as a task for the future.
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